The Statistical Triangle

发布时间:2024-03-26 16:26 阅读:
A A A
报告时间:
报告地点:
报告人:

In his Fisher’s Lecture in 1996, Efron suggested that there is a philosophical triangle in statistics with “Bayesian”, “Fisherian”, and “Frequentist” being the three vertices, and most of the statistical methods can be viewed as a convex linear combination of the three philosophies. We collected and cleaned a data set consisting of the citation and bibtex (e.g., title, abstract, author information) data of 83,331 papers published in 36 journals in statistics and related fields, spanning 41 years. Using the data set, we constructed 21 co-citation networks, each for a time window between 1990 and 2015. We propose a dynamic Degree-Corrected Mixed- Membership (dynamic-DCMM) model, where we model the research interests of an author by a low-dimensional weight vector (called the network memberships) that evolves slowly over time. We propose dynamic-SCORE as a new approach to estimating the memberships. We discover a triangle in the spectral domain which we call the Statistical Triangle, and use it to visualize the research trajectories of individual authors. We interpret the three vertices of the triangle as the three primary research areas in statistics: “Bayes”, “Biostatistics” and “Nonparametrics”. The Statistical Triangle further splits into 15 sub- regions, which we interpret as the 15 representative sub-areas in statistics. These results provide useful insights over the research trend and behavior of statisticians.