林华珍

职称:教授

研究方向:深度学习理论、非参数方法、生存数据分析、函数型数据分析等

雷军科技楼A906

个人简介

武汉大学弘毅客座讲席教授,西南财经大学首席教授,首届新基石研究员,国际数理统计学会IMS-Fellow,国家杰出青年科学基金获得者,入选国家重要人才计划,享受“国务院政府特殊津贴”专家,教育部“新世纪优秀人才支持计划”,首批四川省教书育人名师等。

主要研究领域为深度学习理论、非参数方法、生存数据分析、函数型数据分析、时空数据分析、转换模型、潜变量分析、ROC方法、捕获-再捕获数据分析等。研究成果发表在包括国际统计学四大顶级期刊 JASA、AoS、JRSSB 及 Biometrika 上。目前是国际统计学顶刊 JASA 的 Associate Editor,还先后担任生物统计顶刊《Biometrics》、计量经济顶刊《Journal of Business & Economic Statistics》等7个国际统计期刊及《数学学报》(英文)等4个国内权威期刊编委会编委。

林华珍教授现任国际数理统计学会会士选举委员会委员(COMMITTEE on FELLOW),国际泛华统计学会 ICSA 董事会成员,中国现场统计研究会副理事长,中国现场统计研究会数据科学与人工智能分会理事长,全国工业统计学教学研究会副会长等。

主要奖励与荣誉:

1. 2023年新基石研究员

2. 2021年国际数理统计协会IMS fellow

3. 2011年国家杰出青年基金获得者

4. 2016年、2017年入选国家级重要人才计划

5. 2018年享受政府特殊津贴人选

6. 2019年首批“四川省教书育人名师”

7. 2010年教育部新世纪优秀人才支持计划获得者

8. 第十一批四川省学术和技术带头人

9. 第十批成都市有突出贡献的优秀专家

10. 2022年四川省天府科技领军人才

部分代表性科研项目:

1. 首届新基石研究员项目,2023/01-2029/12

2. 科技部数学和应用研究国家重点研发,分布式统计学习理论与方法,2022/12-2027/11,课题负责人

3. 国家自然科学基金重点项目,半参数集成回归推断,2020/01-2024/12

4. 国家自然科学基金海外及港澳学者合作研究基金延续资助项目,超高维影像数据的特征、结构学习以及统计推断,2019/01-2022/12月,国内主持人

5. 国家自然科学基金面上项目,轨道数据的聚类分析,2016/01-2019/12

6. 国家自然科学基金海外及港澳学者合作研究基金,复杂结构的超高维生物医学数据的统计建模方法,2016/01-2017/12,国内主持人

7. 国家杰出青年科学基金,非参数统计的理论及应用,2012/01-2015/12

部分代表性论文(*为通讯作者):

1. Shoudao Wen, Yi Li, Dehan Kong and Huazhen Lin*. Prediction of Cognitive Function via Brain Region Volumes with Applications to Alzheimer's Disease Based on Space-Factor-Guided Functional Principal Component Analysis. Journal of the American Statistical Association. Online.

2. Bin Liu, Yu Liu, Zhiqian Li, Jianghong Xiao, Guosheng Yin and Huazhen Lin*. Automatic Radiotherapy Treatment Planning with Deep Functional Reinforcement Learning. Proceedings of the 31st ACM SIGKDD Conference on Knowledge Discovery and Data Mining (KDD '25).

3. Chenlin Zhang#, Ling Zhou#, Bin Guo and Huazhen Lin*. Spatial effect detection regression for large scale spatio-temporal covariates. Journal of the Royal Statistical Society: Series B (Statistical Methodology). Accepted.

4. Xuancheng Wang#, Ling Zhou# and Huazhen Lin*. Deep regression learning with optimal loss function. Journal of the American Statistical Association. Online.

5. Ge Zhao*, Yanyuan Ma, Huazhen Lin  and Yi Li (2024). Evaluation of transplant benefits with the U.S. Scientific Registry of Transplant Recipients by semiparametric regression of mean residual life. The Annals of Applied Statistics, 18, 2403-2423.

6. Wei Liu, Huazhen Lin*, Jin Liu and Shurong Zheng (2024). Two-directional simultaneous inference for high-dimensional models. Journal of Business & Economic Statistics, 42, 298-309.

7. Chenlin Zhang,  Huazhen Lin*,  Li Liu, Jin Liu and Yi Li (2023). Functional data analysis with covariate-dependent mean and covariance structures. Biometrics, 79, 2232-2245.

8. Ye He#, Ling Zhou#, Yingcun Xia and Huazhen Lin* (2023). Centre-augmented L2-type regularization for subgroup learning. Biometrics, 79, 2157-2170.

9. Liu Wei, Huazhen Lin*, Shurong Zheng and Jin Liu (2023). Generalized factor model for ultra-high dimensional correlated variables with mixed types. Journal of the American Statistical Association, 118, 1385-1401.

10. Qinzhi Zhong, Huazhen Lin* and Yi Li (2021). Cluster Non-Gaussian Functional Data. Biometrics, 77, 852-865.

11. Huazhen Lin*, Wei Liu and Wei Lan (2021). Regression analysis with individual-specific patterns of missing covariates. Journal of Business & Economic Statistics, 39, 179-188.

12. Ling Zhou, Huazhen Lin*,Kani Chen and Hua Liang (2019). Efficient estimation and computation of parameters and nonparametric functions in generalized semi/non-parametric regression models. Journal of Econometrics, 213, 593-607.

13. Ling Zhou, Huazhen Lin* and Hua Liang (2018). Efficient estimation of the nonparametric mean and covariance functions for longitudinal and sparse functional data. Journal of the American Statistical Association, 113, 1550-1564.

14. Huazhen Lin*, Fanyin Zhou, Qiuxia Wang, Ling Zhou and Jing Qin (2018). Robust and efficient estimation for the treatment effect in causal inference and missing data problems. Journal of Econometrics, 205, 363-380.

15. Shaogao Lv, Huazhen Lin*, Heng Lian and Jian Huang (2018). Oracle Inequalities for Sparse Additive Quantile Regression in Reproducing Kernel Hilbert Space. The Annals of Statistics, 46, 781-813.

16. Huazhen Lin*, Lixian Pan, Shaogao Lv and Wenyang Zhang (2018). Efficient Estimation and Computation for the Generalized Additive Models with Unknown Link Function. Journal of Econometrics, 202, 230-244.

17. Huazhen Lin*, Ling Zhou, Chunhong Li and Yi Li (2014). Semiparametric transformation models for semicompeting survival data. Biometrics, 70, 599-607.

18. Kani Chen, Huazhen Lin* and Yong Zhou (2012). Efficient estimation for the Cox model with varying coefficients. Biometrika, 99, 379-392.

19. Huazhen Lin and Zhou, X. H.* (2009). A semi-parametric two-part mixed-effects heteroscedastic transformation model for correlated right-skewed semi-continuous data. Biostatistics, 10, 640-658.

20. Zhou, X. H.*, Huazhen Lin and Johnson, E. (2009). Nonparametric heteroscedastic transformation regression models for skewed data with an application to health care costs. Journal of the Royal Statistical Society: Series B (Statistical Methodology), 70, 1029-1047.

21. Jianqing Fan, Huazhen Lin and Yong Zhou* (2006). Local partial-likelihood estimation for life time data. The Annals of Statistics, 34, 290-325.

22. Paul S.F.Yip*, Huazhen Lin and Liqun Xi (2005). A Semiparametric Method for Estimating Population Size for Capture-Recapture Experiments with Random Covariates in Continuous Time. Biometrics, 61, 1085-1092.